Chem. Ber. 114, 3209 - 3219 (1981)

Übergangsmetall-Carben-Komplexe, CXVII¹⁾

[(Arylseleno)(diethylamino)carben]pentacarbonylchrom(0)-Komplexe

Ernst Otto Fischer*, Dieter Himmelreich, Ruifang Cai, Helmut Fischer, Ulrich Schubert und Beate Zimmer-Gasser

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching

Eingegangen am 11. Februar 1981

Pentacarbonyl(diethylaminocarbin)chrom-tetrafluoroborat, $[(CO)_5CrCNEt_2]BF_4$, (1) reagiert mit Lithium-arylselenolat, LiSeR, (3) $[R = 4-C_6H_4CF_3(a), 4-C_6H_4Br(b), 4-C_6H_4F(c), C_6H_5(d), 4-C_6H_4CH_3(e), 4-C_6H_4OCH_3(f), 1-C_{10}H_7(g)]$ unter Addition des Selenolat-Anions an das Carbinkohlenstoffatom und Bildung von [(Arylseleno)(diethylamino)carben]pentacarbonyl $chrom(0), (CO)_5Cr[C(SeR)NEt_2], (4a-g). Die Komplexe 4 wurden elementaranalytisch, spek$ troskopisch sowie im Fall von 4d zusätzlich durch eine Röntgenstrukturanalyse gesichert. BeimErwärmen in Lösung lagern sich 4a-g unter CO-Abspaltung und C,Cr-Wanderung von SeR zuden entsprechenden*trans*-(Arylseleno)tetracarbonyl(diethylaminocarbin)chrom-Komplexen,*trans* $-RSe(CO)_4CrCNEt_2, (5a-g) um.$

Transition Metal Carbene Complexes, CXVII¹⁾

[(Arylseleno)(diethylamino)carbene]pentacarbonylchromium(0)

Pentacarbonyl(diethylaminocarbyne)chromium tetrafluoroborate, $[(CO)_5CrCNEt_2]BF_4$, (1) reacts with lithium arylselenolate, LiSeR, (3) $[R = 4 \cdot C_6H_4CF_3 (a), 4 \cdot C_6H_4Br (b), 4 \cdot C_6H_4F (c), C_6H_5 (d), 4 \cdot C_6H_4CH_3 (e), 4 \cdot C_6H_4OCH_3 (f), 1 \cdot C_{10}H_7 (g)]$ with addition of the selenolate anion to the carbyne carbon atom to give [(arylseleno)(diethylamino)carbene]pentacarbonylchromium(0), $(CO)_5Cr[C(SeR)NEt_2]$, (4a - g). The complexes 4 were characterized by elemental analyses, spectroscopic data and in the case of 4d additionally by an X-ray analysis. On heating in solution, 4a - g rearrange with CO-elimination and C,Cr-migration of SeR to the corresponding *trans*-(arylseleno)tetracarbonyl(diethylaminocarbyne)chromium complexes, *trans*-RSe(CO)_4-CrCNEt_2, (5a - g).

Zur Darstellung von Carben-Komplexen kommt dem kationischen Carbin-Komplex Pentacarbonyl(diethylaminocarbin)chrom-tetrafluoroborat, $[(CO)_5CrCNEt_2]BF_4$, (1) eine Schlüsselrolle zu. Komplex 1 reagiert mit einer Reihe von Nucleophilen X⁻ unter Addition von X⁻ an das Carbin-Kohlenstoffatom und Bildung von Aminocarben-Komplexen des Typs (CO)₅Cr[C(X)NEt₂] (2) [X = F²), Cl³, Br, I, NCO, NCS⁴), SnPh₃⁵), AsPh₂⁶]. Einige Vertreter von 2 (X = Cl⁷), Br, I⁴), SnPh₃⁸) zeichnen sich durch die ungewöhnliche Eigenschaft aus, in Lösung unter CO-Abspaltung und C,Cr-

[©] Verlag Chemie GmbH, D-6940 Weinheim, 1981 0009 – 2940/81/1010 – 3209 \$ 02.50/0

$[(CO)_5Cr \equiv CNEt_2] BF_4 \quad 1 \qquad (CO)_5Cr[C(X)NEt_2] \quad 2$

Wanderung von X zu den entsprechenden *trans*-Tetracarbonyl(diethylaminocarbin)chrom-Komplexen, *trans*-X(CO)₄CrCNEt₂, umzulagern. Für **2** mit X = F⁹, CN, NCS⁸, NCO und SiPh₃⁹ andererseits konnte ein analoges Verhalten bisher nicht nachgewiesen werden. In anderen Fällen wiederum (X = AsPh₂, SPh¹⁰) ergaben sich zwar spektroskopisch Hinweise für eine C,Cr-Wanderung von X, allerdings nur als Seitenreaktion einer Zersetzung von **2**. Um weitere Aufschlüsse über die Faktoren zu erhalten, die das Auftreten oder Nichtauftreten der Umlagerung bestimmen, versuchten wir daher die Synthese von Komplexen **2** (X = YR), in denen

(a) das an das Carbenkohlenstoffatom gebundene Heteroatom Y der potentiell C,Crwandernden Gruppierung (YR) konstant gehalten wird,

(b) die Stärke und Polarität der $C_{Carb} - Y$ -Bindung durch verschiedene Substituenten R an Y beeinflußt werden kann, und

(c) durch unterschiedliche Größe von R auch sterische Faktoren studiert werden können.

Präparative Ergebnisse

Pentacarbonyl(diethylaminocarbin)chrom-tetrafluoroborat (1) reagiert bereits bei -30 °C in Methylenchlorid im Verlauf von ein bis drei Stunden mit den Lithiumselenolaten 3a-g unter Addition des Selenolat-Anions an das Carbin-Kohlenstoffatom und Bildung der Diethylaminocarben-Komplexe 4a-g.

$$4 \xrightarrow{> 30^{\circ}C}_{\text{in Losung}} \xrightarrow{\text{O}_{C}}_{\text{RSe-Cr} \equiv \text{CNEt}_{2}} + CO \qquad (2)$$

Die hellgelben Verbindungen $4\mathbf{a} - \mathbf{g}$ sind in polaren Lösungsmitteln gut, in unpolaren mäßig löslich. Im Festzustand sind sie bei Raumtemperatur über mehrere Stunden stabil. Beim Erwärmen in Lösung auf Temperaturen über 30°C hingegen lagern sie sich langsam unter CO-Abspaltung zu den entsprechenden *trans*-(Arylseleno)tetracarbonyl-(diethylaminocarbin)chrom-Komplexen $5\mathbf{a} - \mathbf{g}$ um.

Die Verbindungen 5 sind deutlich labiler als 4. Bei Raumtemperatur zersetzen sie sich auch in Substanz bereits innerhalb weniger Minuten.

Spektroskopische Ergebnisse

Die IR-Spektren von 4a - g (Tab. 1) zeigen im v(CO)-Bereich jeweils vier Absorptionen: zwei Schwingungen von mittlerer bis geringer ($A_1^{(2)}$ und B_1) und zwei von sehr starker Intensität (A⁽¹⁾ und E). Die Intensitätsverteilung der Banden entspricht der von analogen Pentacarbonyl[(diethylamino)halogenocarben]chrom-Komplexen, unterscheidet sich jedoch deutlich von derjenigen von Pentacarbonyl[aryl(methoxy)carben]chrom-Verbindungen. Auffallend ist, daß (a) die $A_1^{(2)}$ - und die formal infrarotverbotene B_1 -Bande nahezu gleich stark (Intensitätsverhältnis: $B_1/A_1^{(2)} = 0.65$ bis 0.85) und (b) die Intensitätsunterschiede zwischen der E- und der $A_{1}^{(1)}$ -Schwingung ebenfalls nur gering sind. Eine Aufspaltung der E-Bande konnte jedoch nicht beobachtet werden. Diese Befunde weisen auf eine deutliche Störung der koplanaren Anordnung der vier cisständigen CO-Gruppen mit dem Zentralmetall hin. Die Zuordnung der Absorptionen erfolgte mit Hilfe der Kraftkonstanten-Bestimmung (Cotton-Kraihanzel-Näherung)¹¹⁾, und zwar so, daß zwischen der berechneten und der tatsächlich aufgefundenen Lage der B₁-Schwingung bestmögliche Übereinstimmung erreicht wurde. Dies führt zu der ungewöhnlichen Zuordnung der intensiveren der beiden langwelligen v(CO)-Banden $(1932-1935 \text{ cm}^{-1})$ zur A₁⁽¹⁾- und der Absorption bei 1940-1943 cm⁻¹ zur E-Schwingung (Intensitätsverhältnis $A_1^{(1)}$: E etwa 2. Die $A_1^{(1)}$ - ist 20 bis 25mal intensiver als die A⁽²⁾-Bande). Diese Zuordnung wird zusätzlich gestützt durch die Ergebnisse der IRund ramanspektroskopischen Untersuchung des analog gebauten (CO)₅Cr[C(Cl)NEt₅], dessen v(CO)-Bandenmuster dem in den Komplexen 4 aufgefundenen entspricht (wegen rascher, photochemisch induzierter Zersetzung konnte an dem stellvertretend für die Verbindungen 4 untersuchten 4g bisher noch kein Ramanspektrum erhalten werden). Im Ramanspektrum des Chlorkomplexes, in dem die E-Absorption nur geringe Intensität besitzen sollte¹², findet man die schwächere der beiden langwelligen und somit die E-Bande bei der kürzeren Wellenlänge. Die aus den Säkulargleichungen¹¹⁾ mit Hilfe der Näherungen $k_c(2+y) = 3k_c$ und $k_t(2+y) =$ $k_c(5+y)^{13}$ errechneten Kraftkonstanten sind in Tab. 1 enthalten. Die CO-Streckschwingungen in 4a - g sind im Gegensatz zu denjenigen in Pentacarbonyl[aryl(amino)carben]chrom(0)¹⁴⁾ praktisch unabhängig von der Art des Arylsubstituenten. Die C_{Carb}-N-Absorption schwankt ebenfalls nur minimal. Ihre Lage bei 1512 bis 1521 cm^{-1} deutet auf einen beträchtlichen C – N-Doppelbindungsanteil hin.

Erwartungsgemäß findet man daher in den ¹H-NMR-Spektren (Tab. 2) bei Raumtemperatur jeweils ein Triplett und ein Quartett für die beiden nichtäquivalenten N-Ethylgruppen entsprechend ihrer *E*- bzw. *Z*-Position bezüglich der C_{Carb} – N-Bindung. Eine Bestimmung der Barriere für die Rotation um die C – N-Bindung war nicht möglich, da sich **4a** – **g** bereits ab 30°C langsam unter CO-Abspaltung zu den Carbin-Komplexen umlagern [vgl. Gleichung (2)].

In den Massenspektren beobachtet man mit Ausnahme von **4c** als Ion mit der höchsten Masse das $(M - CO)^+$ -Ion und – davon ausgehend – die sukzessive Abspaltung von vier CO-Liganden.

			E						×°	k,
48	2058	1978	1943	1935	1521	1531	1581	56	28	28
٩	2058	1978	1942	1934	1518	1529	1580	56	28	28
J	2058	1978	1942	1934	1520	1529	1580	56	28	28
Ρ	2057	1977	1942	1933	1518	1526	1580	56	28	28
9	2057	1977	1941	1932	1518	1526	1578	57	28	29
ب	2056	1977	1940	1932	1518	1526	1578	57	28	29
90	2056	1977	1941	1933	1512	1527	1579	56	28	28
Komplex	$NCH_2CH_3(Z)$	NCH ₂ CH ₃ (E)) $NCH_2CH_3(Z)$	NCH ₂ CH ₃ (E)	C ₆ H ₅	C ₆ H ₄ R	C ₁₀ H ₇	CH ₃	õ	СН ₃
4a	1.08 (t, 3)	1.43 (t, 3)	3.67 (q, 2)	4.42 (q, 2)		7.83 (m, 4)				
Ą	1.03 (t, 3)	1.43 (t, 3)	3.67 (q, 2)	4.37 (q, 2)		7.62 (m, 4)				
J	1.10 (t, 3)	1.57 (t, 3)	3.90 (q, 2)	4.67 (q, 2)		7.97 (m, 4)				
P	1.00 (t, 3)	1.44 (t, 3)	3.73 (q, 2)	4.35 (q, 2)	7.60 (m, 5)					
e	0.93 (t, 3)	1.33 (t, 3)	3.54 (q, 2)	4.23 (q, 2)		7.28 (m, 4)		2.33 (s, 3)		
ب	0.98 (t, 3)	1.42 (t, 3)	3.66 (q, 2)	4.33 (q, 2)		7.30 (m, 4)			3.86	(s, 3)
90	0.98 (t, 3)	1.42 (t, 3)	3.66 (q, 2)	4.38 (q, 2)			8.05 (m, 7)			

Wegen der ungewöhnlichen IR-Spektren im v(CO)-Bereich und da bisher bei allen unter C,Cr-Wanderung von X sich umlagernden Aminocarben-Komplexen 2 eine gegenüber Erwartungswerten verlängerte $C_{Carb} - X$ -Bindung aufgefunden wurde, führten wir an einem Beispiel (4d) eine Röntgenstrukturanalyse durch.

Röntgenstrukturanalyse von 4d

Das Koordinations-Oktaeder des Chromatoms in **4d** ist deutlich verzerrt: die äquatorialen Carbonyl-Gruppen sind wie bei den meisten vergleichbaren Carben-Komplexen vom Carben-Liganden weggebogen und schließen auch untereinander von 90° abweichende Winkel ein ($86.8 - 94.8^\circ$). Das Chromatom ist dadurch um 11.3 pm aus der Ebene der vier äquatorialen Carbonyl-Kohlenstoffatome zum Carben-Kohlenstoff hin verschoben. Dieser ist wie bei allen bisher strukturell untersuchten derartigen Komplexen koplanar mit den drei Substituentenatomen Cr, N und Se. Die Carben-Ebene steht auf Lücke zu den Carbonylgruppen und bildet mit den Oktaederebenen C(1), C(2), C(3), C(6) bzw. C(1), C(3), C(4), C(7) Winkel von 44.5° und 48.4°.

Tab. 3. Atomparameter von 4d. Der anisotrope Temperaturfaktor ist definiert durch $T = \exp[-\frac{1}{4}(h^2a^{*2}B_{11} + k^2b^{*2}B_{22} + l^2c^{*2}B_{33} + 2hka^{*}b^{*}B_{12} + 2hla^{*}c^{*}B_{13} + 2klb^{*}c^{*}B_{23})]; B_{ij}$ in 10⁴ pm²

Atom	x/a	у/ъ	1	:/c	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
Se	-0.0122(1)	0.07519	(2) 0.4	213(1)	3.12(4)	1.28(3) 3.58(4)	0.00(3)	0.26(3)	0.02(3)
C10	-0.167(1)	0.0350(2) 0.2	289(1)	2.7(4)	1.2(3)	3.5(4)	0.0(3)	0.3(3)	0.0(3)
C11	-0,265(1)	0.0177(2) 0.4	12(1)	3.4(4)	2.3(3)	4.0(4)	-0.0(3)	1.3(4)	0.3(3)
C12	-0,358(1)	-0.0160(2) 0.3	32(2)	3.6(5)	1.8(4)	5.9(6)	-0.5(3)	1.7(4)	0.2(4)
C13	-0.350(1)	-0,0310(2) 0.1	33(2)	3.1(5)	1.7(3)	7.0(6)	-0.2(3)	0.3(5)	-0.9(4)
C14	-0.252(1)	-0.0142(3) 0.0	012(1)	4.0(5)	2.3(4)	4.3(5)	0.1(4)	-0.1(4)	-0.9(4)
C15	-0.160(1)	0.0191(2) 0.0	86(1)	3.7(4)	2.3(4)	3.6(4)	0.4(3)	1.4(4)	-0.3(3)
Cr	0,1486(2)	0.16189	(3) 0.5	489(2)	2.56(6)	1.25(5) 2.14(6)	-0.11(4)	0.55(5)	-0.05(4)
C1	-0.061(1)	0.1307(2) 0.3	66(1)	2.5(4)	1.0(3)	3.4(4)	0.2(3)	1.0(3)	0.1(3)
N	-0.1900(8)	0.1434(2) 0.2	43(1)	2.2(3)	1.2(2)	2.6(3)	0.2(2)	0.4(3)	-0.2(2)
C2	0.156(1)	0.1992(2) 0.6	57(1)	4.1(5)	1.6(3)	2.0(3)	-0.2(3)	0.6(3)	-0.1(3)
02	-0.0580(8)	0.2213(2) 0.7	35(1)	4.8(4)	3.1(3)	4.9(4)	0.5(3)	1.2(3)	-1.4(3)
C3	0.329(1)	0,1889(2) 0.7	01(1)	3.3(4)	2.2(3)	3.3(4)	-0.2(3)	0.4(4)	0.2(3)
03	0.4408(8)	0.2048(2) 0.7	96(1)	4.2(4)	4.0(3)	5.3(4)	-1.6(3)	-0.2(3)	-0.5(3)
C4	0.150(1)	0.131(2) 0.8	04(1)	3.6(4)	2.0(3)	2.9(4)	-0.2(3)	0.9(4)	-0.7(3)
04	0.1609(9)	0.1152(2) 0.9	65(1)	8.5(5)	3.1(3)	2.7(3)	0.5(3)	1.8(3)	0.9(2)
C6	0.294(1)	0.1256(2) 0.4	62(1)	3.5(4)	1.6(3)	3.2(4)	0.0(3)	1.1(4)	-0.0(3)
06	C.3939(8)	0.1058(2) 0.4	68(1)	3.6(3)	2.9(3)	6.9(4)	0.7(3)	2.2(3)	0.2(3)
C7	C.168(1)	0,1936(2) 0.3	04(1)	2.8(4)	1.8(3)	2.6(4)	0.2(3)	0.4(3)	0.4(3)
07	C.1945(8)	0.2121(2) 0.1	66(1)	4.9(4)	4.1(3)	3.7(3)	-0,2(3)	1.7(3)	0.9(3)
C51	-C.226(1)	0,1880(:	2) 0.2	12(1)	3.4(4)	0.8(3)	4.5(4)	0.5(3)	0.7(4)	0,8(3)
C52	-C.361(1)	0.1996(3) 0.3	25(2)	5.2(5)	2.1(4)	5.6(5)	1.1(4)	1.1(5)	-0.3(4)
C53	-C.317(1)	0.1187(2	2) 0.1	04(1)	2.7(4)	1.9(3)	3.7(4)	-0.5(3)	0.1(3)	0.4(3)
C54	-C.278(1)	0.1133(3) -0.1	16(1)	4.6(5)	3.9(5)	3.6(5)	-0.5(4)	0.8(4)	-0.5(4)
	H1 1	-0.273	0.030	0,558	,	H521	-0.366	0.223	0.301	
	H12	-0.454	-0.031	0.406		H522	-0.336	0.197	0.459	
	H13	-0.419	-0.054	0,068	1	H523	-0.466	0.184	0.287	
	H14	-0.262	-0.033	-0.154		H531	-0.436	0.132	0.073	
	H 15	-0.091	0.032	-0.009		R532	-0.321	0.093	0.186	
	H511	-0.258	0.191	0.040		H541	-0.164	0.096	-0.087	
	H212	-0.118	0.205	0.259		H542	-0.264	0.140	-0.185	
						B543	-0.365	0.098	-0.216	

Ungewöhnlich sind die strukturellen Details am Carben-Kohlenstoff: wir haben mit 217.1 pm den bisher längsten Cr - C(Carben)-Abstand gefunden (vgl. Lit.¹⁵). Auffal-

lend klein ist der Winkel Se-C(Carben) – Cr, der mit 104.1° deutlich unter den bei Komplexen des Typs 2 bisher beobachteten Werten liegt⁵⁾.

3214

Abb.: Perspektivische Ansicht von 4d mit Atomnumerierung. Die Wasserstoffatome wurden der besseren Übersichtlichkeit halber nicht gezeichnet

Cr - C1 21	7.1(8)	Se - C1 19	1.2(7)
Cr - C2 16	9.4(8)	Se ~ C10 19	93.9(8)
Cr = C3 16	16.5(9)	C1 - N 12	28(1)
Cr - C4 19	0.0(8)	N - C51 15	52(1)
Cr - C6 18	8.7(9)	N - C53 14	9(1)
Cr - C7 19	0.2(8)	SeN 26	2.9
C1 - Cr - C2	91.5(3)	Cr = C2 = 02	175.6(7)
C1 - Cr - C3	178.8(3)	Cr = C3 = 03	178.7(8)
C1 - Cr - C4	93.4(3)	Cr - C4 - 04	174.2(8)
C1 - Cr - C6	92.8(3)	Cr - C6 - O6	173.7(7)
C1 ~ Cr - C7	91.6(3)	Cr - C7 - 07	173.6(7)
C2 - Cr - C3	89.0(4)	Cr - C1 - Se	104.1(3)
C2 ~ Cr - C4	87.1(4)	Cr - C1 - N	132.0(6)
C2 - Cr - C6	175.3(4)	Se - C1 - N	123.9(6)
C2 ~ Cr - C7	94.8(4)	C1 - Se - C10	119,3(3)
C3 - Cr - C4	87.7(4)	C1 - N - C51	121.8(6)
C3 - Cr - C6	86.8(4)	C1 - N - C53	126.8(6)
C3 - Cr - C7	87.3(4)	C51 - N - C53	111.2(6)
C4 - Cr - C6	90.6(4)	N - C51 - C52	109.9(7)
C4 - Cr - C7	174.6(6)	N - C53 - C54	110.3(7)
C6 - Cr - C7	87.2(4)		

Tab. 4. Ausgewählte Abstande (in pill) und winker (in Olad) von 4	Tab.	4.	Ausgewählte	Abstände (in	pm) und	Winkel (ir	Grad)	von 4	d
---	------	----	-------------	--------------	---------	------------	-------	-------	---

Auch die strukturellen Verhältnisse am Selen sind bemerkenswert: der Abstand vom Selen zum Carben-Kohlenstoff C(1) ist mit 191.2 pm etwas kürzer als zum ebenfalls sp^2 -hybridisierten Atom C(10) mit 193.9 pm. Beide Se-C-Abstände entsprechen be-

kannten Bindungslängen¹⁶⁻¹⁹⁾. Hingegen liegt der Winkel C(10) – Se – C(1) von 119.3° weit über allen vergleichbaren bisher am Selen gefundenen Werten¹⁶⁻¹⁹⁾ und ist auch größer als der C(Carben) – S – C(Phenyl)-Winkel von 108.7° in (CO)₅CrC(CH₃)SPh²⁰⁾.

Für C(Carben) – Se müssen partielle π -Bindungsanteile angenommen werden. Neben dem leicht verkürzten C – Se-Abstand und der Tatsache, daß das Atom C(10) des Phenylrings exakt in der Carben-Ebene liegt, spricht auch die große Cr – C(Carben)-Bindungslänge für diese Annahme (zur Diskussion der Wechselbeziehung zwischen Bindungsordnungen von Carben-Substituenten vgl. Lit.¹⁵⁾).

Wegen der starken π -Wechselwirkung zwischen Carben-Kohlenstoff und Aminogruppe sind die Methylen-Kohlenstoffatome C(51) und C(53) ebenfalls koplanar mit der Carben-Ebene. Dies führt bei gegebener *cis*-Anordnung von NEt₂- und Phenylgruppe relativ zur C(Carben) – Se-Bindung (eine *trans*-Anordnung dürfte aus sterischen Gründen benachteiligt sein) zu einer starken sterischen Wechselwirkung zwischen der Ethylgruppe C(53)/C(54) und der Phenylgruppe. Durch Aufweitung der Winkel C(1) – Se – C(10) und C(1) – N – C(53) (126.8°; vgl. C(1) – N – C(51) 121.8°) wird diese Wechselwirkung etwas vermindert.

Nach Überlegungen von Glidewell²¹⁾ wird die Untergrenze eines Winkels X - C - Ydurch den minimalen nichtbindenden Kontaktabstand zwischen X und Y bestimmt. Dieser wurde für die Kombination N/Se zu 272 pm errechnet. In **4d** wird dieser Abstand nur wenig überschritten. Geht man davon aus, daß in allen Aminocarben-Komplexen des Chroms etwa gleiche Winkel Cr – C(Carben) – N beobachtet werden⁵⁾ und daß der Winkel Se – C(Carben) – N sich aus dem Se – N-Kontaktabstand ergibt, dann muß der Winkel Cr – C(Carben) – Se die Differenz der beiden anderen Winkel zu 360° sein, wenn die Planarität des Carben-Kohlenstoffs gewahrt bleiben soll.

Diskussion

Die glatte Addition der Selenolat-Anionen an das Carben-Kohlenstoffatom von 1 bestätigt erneut die allgemeine Anwendbarkeit dieses Syntheseprinzips zur Darstellung von Carben-Komplexen des Typs 2, die wiederum wegen ihrer potentiellen Umlagerung zu Carbin-Komplexen des Typs $trans-X(CO)_4CrCNEt_2$ von großem sowohl praktischem als auch theoretischem Interesse sind. Ebenso wie einige Vertreter von 2 (X = Cl, Br, I, SnPh₃) reagieren 4a - g beim Erwärmen in Lösung unter CO-Abspaltung und C,Cr-Wanderung von X (X = SeR) zu den entsprechenden Carbin-Komplexen ab.

Ähnlich wie einige Verbindungen des Typs 2 besitzen 4a - g von $(CO)_5M[C(R^1)R^2]$ (M = Cr, Mo, W; R¹ = Alkyl, Aryl; R² = OR, NR₂) abweichende Besonderheiten. Die ungewöhnlichen Intensitätsverhältnisse der v(CO)-Banden von 4a - g deuten darauf hin, daß in Lösung die zum Carben-Liganden *cis*-ständigen CO-Gruppen aus der äquatorialen Ebene deutlich herausgebogen sind. Sowohl für eine Anordnung, bei der zwei zueinander *cis*-ständige CO-Gruppen stärker als die restlichen beiden CO-Liganden aus der Ebene gebogen sind (C_s -Verzerrung), als auch für eine, bei der die jeweils zueinander *trans*-ständigen CO-Gruppen unterschiedlich stark verbogen sind (C_{2v} -Verzerrung), sind fünf v(CO)-Absorptionen zu erwarten; drei A₁-, eine B₁- und eine B₂-Bande für einen C_{2v} -verzerrten, drei A'- und zwei A''-Absorptionen für einen C_s verzerrten Komplex. Das beobachtete Spektrenbild deutet daher auf eine gleich starke

Verbiegung aller vier *cis*-CO-Liganden (regenschirmartig vom Carben-Liganden weg) hin. Dabei bleibt die lokale C_{4v} -Symmetrie des Metall-Carbonyl-Gerüsts zwar erhalten, die formal IR-verbotene B₁- und die A₁-Schwingungen sollten jedoch an Intensität gewinnen.

Eine solche Anordnung setzt eine freie Rotation des Carben-Liganden um die Cr - C(Carben)-Bindung bei Raumtemperatur in Lösung voraus. Entsprechende Rotationsbarrieren in oktaedrischen Komplexen wurden zwar bei cis-Tetracarbonylbis(1,3dimethyl-4-imidazolin-2-yliden)chrom, -molybdän und -wolfram ($\Delta G^* = 35.6 - 40.2$ $kJ/mol)^{22}$ und *cis*-(CO)₄M[C(NRCH₂)₂]₂ (M = Cr, Mo, W; R = Me, Et, CH₂Ph)^{23,24} gemessen, die Behinderung der Rotation wurde jedoch vorwiegend auf sterische Wechselwirkungen zwischen den beiden sperrigen cis-ständigen Carben-Liganden zurückgeführt. Damit in Einklang steht, daß weder bei (CO)₅Mo[C(NMeCH₂)₂] noch bei trans-(CO)₄Mo[C(NEtCH₂)₂]²³⁾ Temperaturabhängigkeit der ¹H-NMR-Spektren bis -85 °C beobachtet werden konnte. Damit kann auch bei 4a – g bei Raumtemperatur von einer freien Rotation des Carben-Liganden um die Cr - C(Carben)-Bindung ausgegangen werden. Die bei den Röntgenstrukturanalysen von Pentacarbonylcarben-Komplexen (vgl. Struktur von 4d) vorwiegend beobachtete Stellung der Carben-Ebene auf Lücke zu den cis-Carbonylgruppen dürfte wohl auf Packungseffekte im Kristall zurückzuführen sein. Das Elektronendefizit am Carben-Kohlenstoffatom wird somit hauptsächlich durch starke C(Carben) - N- und zu einem geringeren Ausmaß C(Carben) – Se- π -Bindungsanteile ausgeglichen, während der Rückbindung von Chrom zum Carben-Kohlenstoff bei 4a-g gegenüber Organylcarben-Komplexen (entsprechend dem großen Cr - C(Carben)-Abstand in **4d**) geringere Bedeutung zukommt. Dies zeigt sich auch einerseits in dem im Vergleich zu C - N-Streckschwingungen stark nach kürzeren Wellenzahlen verschobenen v[C(Carben) = N]-und dem kurzen C=N-Abstand sowie andererseits in dem geringfügig verkürzten C(Carben) - Se-Abstand.

Da bei allen bisher strukturell untersuchten Carben-Komplexen des Typs 2, die sich zu Carbin-Komplexen *trans*-X(CO)₄CrCNEt₂ umlagern, aufgeweitete C(Carben) – X-Abstände aufgefunden wurden, lag die Vermutung nahe, daß zwischen beiden Befunden ein Zusammenhang besteht⁸⁾. Bei dem sich ebenfalls umlagernden 4d wurde nun erstmals eine eher *verkürzte* Bindungslänge gefunden. Somit dürfte also kein ursächlicher Zusammenhang zwischen C – X-Bindungslänge und der Tendenz zur Carben/Carbin-Komplex-Umlagerung bestehen, zumal bei (CO)₅Cr[C(SiPh₃)NEt₂] zwar eine verlängerte C(Carben) – Si-Bindung festgestellt, eine entsprechende Umlagerung jedoch noch nicht beobachtet werden konnte.

Wir danken der Deutschen Forschungsgemeinschaft, Bonn-Bad Godesberg, für eine wertvolle Sachbeihilfe, dem Deutschen Akademischen Austauschdienst für ein Stipendium für Herrn Ruifang Cai (Fudan Universität, Schanghai), sowie den Herren Dr. B. Lippert und Dipl.-Chem. R. Pfab für die Aufnahme von Raman-Spektren.

Experimenteller Teil

Alle Arbeiten wurden unter N₂-Schutz durchgeführt. Die Lösungsmittel waren sorgfältig getrocknet und ebenso wie das zur Chromatographie verwendete Kieselgel (Nr. 60, 0.063 - 0.2 mm, Fa. Merck) N₂-gesättigt.

	Tab. 5. Da	rstellungs	varianten,	Schmel	zpunkte, Ausbeuten 1	nd an	alytisch	e Daten	der Ko	mplexe	4			
	Name	Darst Variante	Schmp. [°C]	Ausb. in % (bez. auf 1)	Summen for mel Moimasse		С	Н	Br	Anal Cr	yse F	z	0	s
4 13	Pentacarbonyl'(diethyl- amino)[4-(trifluormethyl)- phenylseleno]carben _i - chrom(0)	7	67 (Zers.)	59	C ₁₇ H ₁₄ CrF ₃ NO₅Se Ber. 500.3	Ber. Gef.	40.82 41.16	2.82 2.96		10.49 10.27	11.39 11.60	2.80 2.65		15.78 16.20
ع	[(4-Bromphenylseleno)(di- ethylamino)carben]penta- carbonylchrom(0)	1b	79 (Zers.)	43	C ₁₆ H ₁₄ BrCrNO ₅ Se Ber. 511.2	Ber. Gef.	37.60 37.78	2.76 2.84	15.63 14.20	10.17 9.84		2.74 2.48	15.65 15.91	15.45 15.50
J	Pentacarbonyl[(diethyl- amino)(4 fluorphenyl- seleno)carben]chrom(0)	1b	81 (Zers.)	46	C ₁₆ H ₁₄ CrFNO ₅ Se Ber. 450.2 Gef. 451 ^{a.b)}	Ber. Gef.	42.68 42.04	3.13 3.13		11.55 11.33	4.22 4.20	3.11 3.06		17.54 17.80
P	Pentacarbonyl[(diethyl- amino)(phenylseleno)- carben]chrom(0)	1 a	74 (Zers.)	47	C ₁₆ H ₁₅ CrNO ₅ Se Ber. 432.3	Ber. Gef.	44.46 44.19	3.50 3.55		12.03 11.95		3.24 3.20	18.51 18.29	18.27 18.20
8	Pentacarbonyl[(diethyl- amino)(4.methylphenyl- seleno)carben]chrom(0)	1b	73 (Zers.)	31	C ₁₇ H ₁₇ CrNO ₅ Se Ber. 446.3	Ber. Gef.	45.75 45.71	3.84 3.91		11.65 11.52		3.14 3.01	17.92 18.40	17.69 17.90
1	Pentacarbonyl{(diethyl- amino)(4.methoxyphenyl- seleno)carben]chrom(0)	đ	76 (Zers.)	29	C ₁₇ H ₁₇ CrNO ₆ Se Ber. 462.3	Ber. Gef.	44.17 44.20	3.71 3.75		11.25 11.17		3.01 3.07	20.77 20.63	17.08 17.40
00	Pentacarbonyl{(diethyl- amino)(1-naphthylseleno)- carben]chrom(0)	la	89 (Zers.)	56	C ₂₀ H ₁₇ CrNO ₅ Se Ber. 482.3	Ber. Gef.	49.81 49.69	3.55 3.56		10.78 10.62		2.90	16.59 16.74	16.37 16.60

^{a)} Massenspektrometr. - ^{b)} Bezogen auf ⁸⁰Se.

Die eingesetzten Arylselenole wurden nach üblichen Literatur-Methoden dargestellt.

Die Bestimmung der Schmelzpunkte erfolgte in abgeschmolzenen Kapillaren; die Werte sind unkorrigiert. Die angegebenen Ausbeuten sind nicht optimiert.

Allgemeine Arbeitsvorschrift zur Darstellung von 4a-g

Variante 1: 10.0 mmol des in ca. 20 ml Pentan gelösten Arylselenols werden mit der äquimolaren Menge n-Butyllithium in das entsprechende Lithiumsalz 3 übergeführt. Nach Zusatz von 60 ml CH₂Cl₂ werden in die entstandene Suspension bei -70 bis -60 °C unter Magnetrührung 5-7 mmol 1 eingetragen. Man erwärmt auf -30 °C und rührt noch 1 h bei dieser Temperatur. Anschließend wird über eine Glasfritte filtriert und das Filtrat bei -30 °C zur Trockene gebracht. Die Reinigung der Rohprodukte erfolgt durch

(a) Chromatographie an Kieselgel mit $CH_2Cl_2/Pentan (1:1 bis 2:1)$ bei -25 °C und anschließende Umkristallisation aus $CH_2Cl_2/Pentan (1:1)$, oder durch

(b) mehrfache Umkristallisation aus verschiedenen Mischungen von CH₂Cl₂ und Pentan.

Variante 2: Zu 10.0 mmol des Arylselenols in 20 ml THF gibt man bei -60 °C 10.0 mmol n-Butyllithium und tropft die entstandene Selenolatlösung bei -60 °C zu einer Lösung von 7.0 mmol 1 in 75 ml CH₂Cl₂. Man rührt noch 1 h und entfernt anschließend bei Temperaturen unterhalb -30 °C das Lösungsmittel i. Vak. Der Rückstand wird mit CH₂Cl₂/Pentan (1:2) extrahiert, der Extrakt auf ca. 30 ml eingeengt und das daraus bei -78 °C ausfallende Rohprodukt aus CH₂Cl₂/ Pentan (1:3) umkristallisiert.

Synthesevarianten, Schmelzpunkte, Ausbeuten und Analysenwerte für die Komplexe 4a - g sind in Tab. 5 zusammengestellt.

Röntgenstrukturanalyse von 4d

Aus CH₂Cl₂ wurden blaßgelbe Kristalle erhalten: C₁₆H₁₅CrNO₅Se, Molmasse 432.3, monoklin, Kristallgröße 0.25 × 0.2 × 0.2 mm, Raumgruppe $P2_1/c$, Z = 4, a = 845.4(5), b = 3330(3), c = 630.4(4) pm, $\beta = 101.74(5)^{\circ}$, $d_{ber.} = 1.61$ gcm⁻³. Die Intensitätsmessungen erfolgten bei -30° C auf einem Syntex P2₁-Vierkreis-Diffraktometer mit Mo- K_{α} -Strahlung (Graphit-Monochromator, $\lambda = 71.069$ pm). Aus 2738 gemessenen, unabhängigen Reflexen (ω -scan, $3^{\circ} \le 2\Theta \le 47^{\circ}$) wurden nach Lorentz- und Polarisations-Korrektur 2256 Strukturfaktoren mit $F_{o} \ge 3.92 \sigma$ (F_{o}) erhalten. Die Struktur wurde mit direkten Methoden (MULTAN) gelöst und bis zu einem *R*-Faktor von $R_1 = R_2 = 0.066$ verfeinert.

¹⁾ CXVI. Mitteil.: E. O. Fischer, W. Röll, U. Schubert und K. Ackermann, Angew. Chem., im Druck; Angew. Chem., Int. Ed. Engl., im Druck.

²⁾ E. O. Fischer, W. Kleine und F. R. Kreiβl, Angew. Chem. 88, 646 (1976); Angew. Chem., Int. Ed. Engl. 15, 616 (1976).

³⁾ A. Motsch, Dissertation, Techn. Univ. München 1980.

⁴⁾ E. O. Fischer, W. Kleine, F. R. Kreiβl, H. Fischer, P. Friedrich und G. Huttner, J. Organomet. Chem. 128, C49 (1977).

⁵⁾ E. O. Fischer, R. B. A. Pardy und U. Schubert, J. Organomet. Chem. 181, 37 (1979).

⁶⁾ U. Schubert, E. O. Fischer und D. Wittmann, Angew. Chem. **92**, 662 (1980); Angew. Chem., Int. Ed. Engl. **19**, 643 (1980).

⁷⁾ H. Fischer, A. Motsch und W. Kleine, Angew. Chem. **90**, 914 (1978); Angew. Chem., Int. Ed. Engl. 17, 842 (1978).

- ⁸⁾ E. O. Fischer, H. Fischer, U. Schubert und R. B. A. Pardy, Angew. Chem. 91, 929 (1979); Angew. Chem., Int. Ed. Engl. 18, 871 (1979).
- 9) H. Fischer und A. Motsch, unveröffentlichte Untersuchungen.
- ¹⁰⁾ E. O. Fischer, H. Fischer und D. Wittmann, unveröffentlichte Untersuchungen.
- ¹¹⁾ F. A. Cotton und C. S. Kraihanzel, J. Am. Chem. Soc. 84, 4432 (1962).
- ¹²⁾ P. S. Braterman, Metal Carbonyl Spectra, S. 69, Academic Press, London 1975.
- ¹³⁾ F. T. Delbeke, E. G. Claeys, G. P. van der Kelen und R. M. de Caluwe, J. Organomet. Chem. 23, 497 (1970).
- ¹⁴⁾ E. O. Fischer und H.-J. Kollmeier, Chem. Ber. 104, 1339 (1971).
- ¹⁵⁾ U. Schubert, J. Organomet. Chem. 185, 373 (1980).
- ¹⁶ M. Klinga, R. Kivekäs, T. Simonen, T. Laitalainen, R. Uggla und M. Sundberg, Cryst. Struct. Commun. 7, 531 (1978).
- ¹⁷⁾ J. P. Collman, R. K. Rothrock, J. P. Sen, T. D. Tullius und K. O. Hodgson, Inorg. Chem. 15, 2947 (1976).
- ¹⁸⁾ C. M. Woodard, D. S. Brown, J. D. Lee und A. G. Massey, J. Organomet. Chem. 121, 333 (1976).
- ¹⁹⁾ H. Fischer, E. O. Fischer, D. Himmelreich, R. Cai, U. Schubert und K. Ackermann, Chem. Ber. 114, 3220 (1981), nachstehend.
- 20) R. J. Hoare und O. S. Mills, J. Chem. Soc., Dalton Trans. 1972, 653.
- ²¹⁾ C. Glidewell, Inorg. Chim. Acta 12, 219 (1975).
- ²²⁾ C. G. Kreiter, K. Öfele und G. W. Wieser, Chem. Ber. 109, 1749 (1976).
- ²³⁾ M. F. Lappert, P. L. Pye und G. M. McLaughlin, J. Chem. Soc., Dalton Trans. 1977, 1272.
- 24) M. F. Lappert und P. L. Pye, J. Chem. Soc., Dalton Trans. 1977, 1283.

[46/81]
